Publications

2021

  • Dandekar, R., Chung, K., Dixit, V., Tarek, M., Garcia-Valadez, A., Vemula, K. V., and Rackauckas, C. (2020). Bayesian Neural Ordinary Differential Equations. ArXiv. https://arxiv.org/abs/2012.07244

  • Kim, S., Ji, W., Deng, S., Ma, Y., and Rackauckas, C. (2021). Stiff neural ordinary differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(9), 093122. https://doi.org/10.1063/5.0060697

  • Loose, N., & Heimbach, P. (2021). Leveraging Uncertainty Quantification to Design Ocean Climate Observing Systems. Journal of Advances in Modeling Earth Systems, 13(4), 1-25. doi:10.1029/2020ms002386

  • Morlighem, M., Goldberg, D., Santos, T. D. dos, Lee, J., and Sagebaum, M. (2021). Mapping the Sensitivity of the Amundsen Sea Embayment to Changes in External Forcings Using Automatic Differentiation. Geophysical Research Letters, 48(23). https://doi.org/10.1029/2021gl095440

  • Moses, W. S., Churavy, V., Paehler, L., Hueckelheim, J., Narayanan, S. H. K., Schanen, M., & Doerfert, J. (2021). Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. Proceedings of SC’21, November 14-19, 2021, https://doi.org/10.1145/3458817.3476165

  • Pal, A., Ma, Y., Shah, V., and Rackauckas, C. (2021). Opening the Blackbox: Accelerating Neural Differential Equations by Regularizing Internal Solver Heuristics. Proceedings of Machine Learning Research, 139, 8325–8335. https://proceedings.mlr.press/v139/pal21a.html

  • Pestourie, R., Mroueh, Y., Rackauckas, C., Das, P., and Johnson, S. G. (2021). Physics-enhanced deep surrogates for PDEs. ArXiv. https://arxiv.org/abs/2111.05841

  • Rackauckas, C., Anantharaman, R., Edelman, A., Gowda, S., Gwozdz, M., Jain, A., Laughman, C., Ma, Y., Martinuzzi, F., Pal, A., Rajput, U., Saba, E., & Shah, V. B. (2021). Composing Modeling and Simulation with Machine Learning in Julia. Proceedings of 14th Modelica Conference 2021. https://arxiv.org/abs/2105.05946

  • Roesch, E., Rackauckas, C., and Stumpf, M. P. H. (2021). Collocation based training of neural ordinary differential equations. Statistical Applications in Genetics and Molecular Biology, 20(2), 37–49. https://doi.org/10.1515/sagmb-2020-0025

  • Schaefer, F., Tarek, M., White, L., & Rackauckas, C. (2021). AbstractDifferentiation.jl: Backend-Agnostic Differentiable Programming in Julia. NeurIPS 2021 Differentiable Programming Workshop. https://arxiv.org/abs/2109.12449.

  • Willcox, K. E., Ghattas, O., & Heimbach, P. (2021). The imperative of physics-based modeling and inverse theory in computational science. Nature Computational Science, 1(3), 166-168. doi:10.1038/s43588-021-00040-z